

3D Force Button Sensor
C++ Library for WINDOWS

(Beta v1.0)

Installation and Operation Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

January, 2022

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 2

Foreword

Information contained in this document is the property of Contactile Pty Ltd. and shall not be
reproduced in whole or in part without prior written approval of Contactile Pty Ltd. The information
herein is subject to change without notice and should not be construed as a commitment on
Contactile Pty Ltd. This manual is periodically revised to reflect and incorporate changes made to
the 3D Force Button Sensor Development Kit.

Contactile Pty Ltd assumes no responsibility for any errors or omissions in this document. Users'
critical evaluation is welcome to assist in the preparation of future documentation.

Copyright © by Contactile Pty Ltd, Sydney, Australia. All Rights Reserved.
Published in Australia.

All trademarks belong to their respective owners.

Conditions of Sale

Contactile's conditions of sale apply to all products sold by Contactile to the Distributor under this
Agreement. The conditions of sale that apply are provided on the USB flash drive shipped with the
product in the folder ‘LEGAL’ in the root directory.

End User Licence Agreement

Contactile's end user license agreement applies to all software and algorithms included with the
products sold by Contactile. The end user license agreement that applies is provided on the USB
flash drive shipped with the product in the folder ‘LEGAL’ in the root directory.

Compliance

The devices are sold as is.

The devices are specifically designed solely for the purposes of research and development only
made available on a business-to-business basis.

The devices are not for resale.

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 3

Table of Contents

1 Introduction .. 4

2 Safety .. 5

2.1 General ... 5

2.2 Explanation of warnings .. 5

2.3 Precautions ... 5

3 Getting started ... 6

3.1 Hardware installation... 6

3.2 Software installation .. 6

3.3 Library linking .. 6

4 Class and function documentation ... 7

4.1 Constants .. 7

4.2 Class list ... 8

4.3 Function list ... 8

5 Writing a user application using the C++ Library .. 11

5.1 Include files ... 11

5.2 Initialising PTSDKSensor and PTSDKListener objects .. 12

5.3 Connecting to the COM port and listening for data .. 13

5.4 Biasing the sensors ... 15

5.5 Accessing sensor data .. 15

6 Log file ... 16

6.1 Overview ... 16

6.2 Log file location ... 16

6.3 Log file name .. 16

6.4 Log file format ... 16

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 4

1 Introduction

The 3D Force Button Sensor Development Kit (Beta v1.0) is a system of (up to) five 3D Force
Button Sensors per adapter, (up to) two Adaptors, and a Controller. Each 3D Force Button Sensor
can measure 3D force. The Controller supplies power for (up to) two Adaptors and coordinates the
simultaneous data acquisition from up to ten 3D Force Button Sensors. The Development Kit is
shipped with visualisation software and (optional) C++ libraries for Windows and Linux
environments and a ROS node for developing software control algorithms using the sensor signals.
 The main components of the 3D Force Button Sensor Development Kit (Beta v1.0) are
shown in Figure 1.1, connected to a laptop running the visualisation software.

Figure 1.1 – The 3D Force Button Sensor Development Kit (Beta v1.0). Laptop not included.

This document is an installation and operation manual for the C++ Library for WINDOWS which
was provided on the Contactile USB flash drive that was shipped with the 3D Force Button Sensor
Development Kit (Beta v1.0).

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 5

2 Safety

2.1 General

The customer should verify that the maximum loads and moments expected during operation fall
within the sensing range of the sensor as outside this range, sensor reading accuracy is not
guaranteed (refer to Document #3DFDK_B1.0_MAN_JAN22). Particular attention should be paid
to dynamic loads caused by robot acceleration and deceleration if the sensors are mounted on
robotic equipment. These forces can be many multiples of the value of static forces in high
acceleration or deceleration situations.

2.2 Explanation of warnings

The warnings included here are specific to the product(s) covered by this manual. It is expected
that the user heed all warnings from the manufacturers of other components used in the
installation.

Danger indicates that a situation could result in potentially serious injury or damage to
equipment.

Caution indicates that a situation could result in damage to the product and/or the other
system components.

2.3 Precautions

DANGER: Do not attempt to disassemble the sensor. This could damage the sensor
and will invalidate the calibration.

DANGER: Do not attempt to drill, tap, machine, or otherwise modify the sensor casing.
This could damage the sensor and will void invalidated the calibration.

DANGER: Do not use the sensor on abrasive surfaces or surfaces with sharp
points/edges. This could damage the silicone surface of the sensor.

CAUTION: Sensors may exhibit a small offset in readings when exposed to intense
light sources.

CAUTION: Exceptionally strong and changing electromagnetic fields, such as those
produced by magnetic resonance imaging (MRI) machines, constitute a possible
source of interference with the operation of the sensor and Controller.

CAUTION: Temperature variations can cause drift in sensor readings. Some
temperature compensation is performed. However, bias removal in software prior to
operation is necessary, and it is recommended that biasing is performed each time the
sensor is known to be unloaded.

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 6

3 Getting started

This section contains instructions for setting up and using 3D Force Button Sensor C++ Library for
WINDOWS (Beta v1.0). It is recommended that first time users first read the preceding Safety
section, then read through this section to get more familiar with the system.

3.1 Hardware installation

The C++ Library is used with the 3D Force Button Sensor Development Kit (Beta v1.0). The
Controller should be connected to the 3D Force Button Sensors, then the Controller should be
connected via the micro USB port on the Controller to a PC running WINDOWS before you can
use the C++ Library. For more information about connecting the sensors and powering on the
Controller, refer to Document #3DFDK_B1.0_MAN_JAN22.

3.2 Software installation

The C++ Library is provided on the Contactile USB flash drive that was shipped with the
development kit in a folder named SOFTWARE/C++WIN. To install the library, simply copy the
entire contents of the C++WIN folder to a location on a PC running Windows.

The files in the C++WIN folder are summarised in Table 3.1.

Table 3.1 – Files in C++WIN folder

Sub
Folder

File Name File Description

Include PTSDK_CPP_LIB.h The header file containing DLL definitions

 PTSDKConstants.h The header file containing constant definitions

 PTSDKListener.h The header file for the PTSDKListener class

 PTSDKSensor.h The header file for the PTSDKSensor class

 PTSDKPillar.h The header file for the PTSDKPillar class

Lib PTSDK_CPP_LIB.lib For statically linking the library

DLL PTSDK_CPP_LIB.dll For dynamically linking the library during runtime

Example USER_APP_EXAMPLE.vcproj
and associated files

A Visual Studio 2019 project containing an
example user program

 USER_APP_EXAMPLE.cpp The example C++ code

 USER_APP_EXAMPLE.h Header file for USER_APP_EXAMPLE.cpp

3.3 Library linking

The library must be linked in your software project. For detailed information about linking the library
to your software project, consult the relevant documentation of the development environment being
used.

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 7

4 Class and function documentation

In this section, the classes and class functions of the C++ Library are described.

4.1 Constants

The PTSDKConstants.h file contains definitions of constants that are used across a number of the
library classes. The constants are described in Table 4.1.

Table 4.1 – Constants defined by #define pre-processor directives in PTSDKConstants.h

Name Value Description

IN - Used in a function declaration to indicate an input parameter

OUT - Used in a function declaration to indicate an output parameter

STARTBYTE0 0x55 The first byte of the start packet

STARTBYTE1 0x66 The second byte of the start packet

STARTBYTE2 0x77 The third byte of the start packet

STARTBYTE3 0x88 The fourth byte of the start packet

ENDBYTE0 0xAA The first byte of the end packet

ENDBYTE1 0xBB The second byte of the end packet

ENDBYTE2 0xCC The third byte of the end packet

ENDBYTE3 0xDD The fourth byte of the end packet

X_IND 0 The index of the X-dimension

Y_IND 1 The index of the Y-dimension

Z_IND 2 The index of the Z-dimension

NDIM 3 The number of spatial dimensions

MAX_NSENSOR 4 The maximum number of sensors connected to the Controller

LOG_RATE_100 100 Constant representing 100 Hz sampling rate

LOG_RATE_500 500 Constant representing 500 Hz sampling rate

LOG_RATE_1000 1000 Constant representing 1000 Hz sampling rate

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 8

4.2 Class list

The classes in the C++ Library and a brief description are listed in Table 4.2.

Table 4.2 – Classes in the C++ Library

Class Description

PTSDKListener
Describes a listener for the Controller with a number of 3D Force Button Sensors
connected

PTSDKSensor Describes a 3D Force Button Sensor

4.3 Function list

The functions in each class are described in the following subsections. A function called

myFunction with N input parameters (with names param1 to paramN), M output parameters (with

names paramN+1 to paramN+M) and a return value is described in the following way:

typeR myFunction(IN type1 param1, …, IN typeN paramN,
 OUT typeN+1 paramN+1, …, OUT typeN+M paramN+M)
Description: A description of the function myFunction
Parameters: [in] param1 A description of the input parameter “param1” of type “type1”.
 ⁞
 [in] paramN A description of the input parameter “paramN” of type “typeN”.
 [out] paramN+1 A description of the output parameter “paramN+1” of type

“typeN+1”.
 ⁞
 [out] paramN+M A description of the output parameter called “paramN+M” of

type “typeN+M”.
Returns: A description of the return value of type “typeR”.

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 9

4.3.1 PTSDKListener class public functions

The PTSDKListener is the class which interacts with the Controller that is in turn hosting up to ten
connected 3D Force Button Sensors. This class describes an object that connects with the
Controller via a serial connection emulated on the computer’s USB port, and reads and processes
the data streaming through the serial connection. This class also logs the data to a log file – See
Section 6 Log file. The public member functions of the PTSDKListener class are described below.

PTSDKListener(IN const bool isLog)
Description: Constructor.
Parameters: [in] isLog A flag indicating whether to log data to CSV file.

~PTSDKListener()
Description: Destructor.

void addSensor(IN PTSDKSensor * pSensor)
Description: Adds a sensor object to the PTSDKListener.
Parameters: [in] pSensor A pointer to the sensor object.

int connect (IN const char *port,
 IN const int rate,
 IN const int parity,
 IN const char byteSize)
Description: Connects to the COM port.

Used in conjunction with the readNextSample and disconnect functions.
Parameters: [in] port The COM port name.
 [in] rate The rate of the connection.
 [in] parity The parity of the connection.
 [in] byteSize The byte size for the connection.
Returns: 0 if successfully connected, error code if unsuccessful.

int connectAndStartListening(IN const char *port,
 IN const int rate,
 IN const int parity,
 IN const char byteSize,
 IN const int logFileRate)
Description: Connects to the COM port and starts listening for data (starts the listening thread),

processes the data and logs the data to a log file.
Used in conjunction with the stopListeningAndDisconnect function.

Parameters: [in] Port The COM port name.
 [in] Rate The rate of the connection.
 [in] Parity The parity of the connection.
 [in] byteSize The byte size for the connection.
 [in] logFileRate The log file rate. LOG_RATE_100, LOG_RATE_500 Hz, or

LOG_RATE_1000 for 100, 500 or 1000 Hz, respectively.
Returns: 0 if successfully connected, error code if unsuccessful.

void disconnect(void)
Description: Disconnects from the COM port.

Used in conjunction with the connect and readNextSample functions.

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 10

bool readNextSample(void)
Description: Reads and parses the next sample from the COM port, and stores the sample in

the associated PTSDKSensor objects.
Used in conjunction with the connect and disconnect functions.

Returns: True if successfully read a sample, false if unsuccessful.

void run(void)
Description: The ‘infinite’ loop of the listening thread.

The thread implementation necessitates that this is a public member function.
However, this function should not be called except through the
connectAndStartListening function when the listening thread is spawned.

bool sendBiasRequest(void)
Description: Sends a bias request to the Controller. A bias should be performed after

connecting to the serial port and starting to stream data with the sensor unloaded.
A bias should be performed each time the sensor is known to be unloaded. A bias
operation takes approximately 2 s. Ensure that the sensor remains unloaded
throughout this time.

Returns: True if successfully sent the request, false if unsuccessful.

void stopListeningAndDisconnect(void)
Description: Stops listening for data from the COM port (and kills the listening thread), stops

logging data to the log file and disconnects from the COM port.

4.3.2 PTSDKSensor class public functions

The PTSDKSensor is a class that describes a 3D Force Button Sensor (v2.0). This is the main
class for accessing the current sensor measurements in a user-defined program.

PTSDKSensor(void)
Description: Constructor - Initialises pillars

~PTSDKSensor(void)
Description: Destructor.

void getGlobalForce(OUT double result[NDIMENSION])
Description: Gets the global X,Y,Z force acting on the sensor.
Parameters: [out] result The global X, Y and Z force.

uint32_t getTimestamp_us(void)
Description: Gets the timestamp of the current sample of a pillar in µs.
Returns The timestamp of the current sample of a pillar in us.

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 11

5 Writing a user application using the C++ Library

This section contains code snippets to explain each step required to write a user application that uses
the C++ Library to monitor ten 3D Force Button Sensors. The full example can be found in the
USER_APP_EXAMPLE.cpp file in the Example subfolder of the C++ Library folder.

5.1 Include files

The examples for a user defined application in the following sections require the include files listed in

Example 5.1.

Example 5.1 – Include files for the example user application

#include "stdafx.h"

#include <stdio.h>

#include <tchar.h>

#ifndef PTSDKCONSTANTS_H

#include "PTSDKConstants.h"

#endif

#ifndef PTSDKLISTENER_H

#include "PTSDKListener.h"

#endif

#ifndef PTSDKSENSOR_H

#include "PTSDKSensor.h"

#endif

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 12

5.2 Initialising PTSDKSensor and PTSDKListener objects

To initialise a PTSDKListener object, first, the PTSDKSensor objects must be initialised. The
following information is required to initialise the PTSDKSensor objects. Ten sensors should be
initialised irrespective of how many physical sensors are connected. An example of initialising two

PTSDKSensor objects then initialising the PTSDKListener object is shown in Example 5.2.

Example 5.2 – Initialising two PTSDKSensor objects and a PTSDKListener object

/* Initialise 10x PTSDKSensor objects irrespective of number of physical sensors */

PTSDKSensor sen0 = PTSDKSensor();

PTSDKSensor sen1 = PTSDKSensor();

PTSDKSensor sen2 = PTSDKSensor();

PTSDKSensor sen3 = PTSDKSensor();

PTSDKSensor sen4 = PTSDKSensor();

PTSDKSensor sen5 = PTSDKSensor();

PTSDKSensor sen6 = PTSDKSensor();

PTSDKSensor sen7 = PTSDKSensor();

PTSDKSensor sen8 = PTSDKSensor();

PTSDKSensor sen9 = PTSDKSensor();

/* Initialise the PTSDKListener object irrespective of number of physical sensors */

bool isLogging = true; // Create a log file

PTSDKListener listener = PTSDKListener(isLogging);

/* Add 10x sensors to the listener */

listener.addSensor(&sen0); // SENO - A

listener.addSensor(&sen1); // SENO - B

listener.addSensor(&sen2); // SENO - C

listener.addSensor(&sen3); // SENO - D

listener.addSensor(&sen4); // SENO - E

listener.addSensor(&sen5); // SEN1 - A

listener.addSensor(&sen6); // SEN1 - B

listener.addSensor(&sen7); // SEN1 - C

listener.addSensor(&sen8); // SEN1 - D

listener.addSensor(&sen9); // SEN1 - E

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 13

5.3 Connecting to the COM port and listening for data

After initialising the PTSDKListener, a serial connection must be established. To connect to the
COM port, the name of the COM port assigned to the connected Controller must be known. Once
the PTSDKListener has established a connection with the COM port of the Controller, the
Controller will begin transmitting data through the serial connection.

There are two methods by which a user defined program can retrieve data from the Controller:

1. Single thread
2. Multi-threaded

Note: There should be a COM port associated with the Controller (to power the Controller, the
micro-USB should be connected between the micro-USB port on the Controller and the PC).

When data is no longer required, the PTSDKListener object should stop listening for data,
disconnect from the COM port and flush and close the log file.

5.3.1 COM port configuration parameters

The COM port configuration parameters are first required. An example of initialising the COM port
configuration parameters is shown in Example 5.3.

Example 5.3 – Connecting the PTSDKListener object to the COM port and listen for data in a
single thread

/* Initialise connection parameters */

char port[] = "\\\\.\\COM1"; // The name of the COM port to connect with

 // The additional ‘\’ characters are required

int rate = 9600; // The rate of the serial connection

int parity = 0; // 0=PARITY_NONE, 1=PARITY_ODD, 2=PARITY_EVEN

char byteSize = 8; // The number of bits in a byte

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 14

5.3.2 Single thread

The structure of a user defined application using a single thread to retrieve sensor data from the
Controller is shown in Example 5.4.

Example 5.4 – Connecting to the COM port and listening for data in a single thread

/* Connect to the serial port */

if(listener.connect(port, rate, parity, byteSize) == 0){

 printf("main(): Successfully connected to %s.\n",port);

}else{

 printf("main(): FAILED to connect to %s\n.",port);

 return -1;

}

while(true){

 /* Read the next sample from the Controller */

if(listener.readNextSample()){

 printf("main(): Successfully read the next sample.\n");

}else{

 printf("main(): FAILED to read the next sample.\n");

 break;

}

/* Retrieve data from PTSDKSensor objects and do something with it */

// User specific code goes here - See Example 5.7

}

/* Disconnect from the COM port */

listener.disconnect();

5.3.3 Multi-threaded

The PTSDKListener object can launch a thread which listens for and processes the incoming data
packets. An example of how to connect to the COM port and start listening for data using a new
thread is shown in Example 5.5.

Example 5.5 – Connecting to the COM port and listening for data in a multi-threaded application

/* Connect to the serial port and start listening for and processing data */

if(listener.connectAndStartListening(port, rate, parity, byteSize, LOG_RATE_1000) == 0){

 printf("main(): Successfully connected to %s & started listening\n",port);

}else{

 printf("main(): FAILED to connect to %s, didn’t start listening\n",port);

 return -1;

}

while(true){

/* Retrieve data from PTSDKSensor objects and o something with it */

// User specific code goes here - See Example 5.7, Error! Reference source not f

ound., and Error! Reference source not found.

}

/* Stop listening for and processing data and disconnect from the COM port */

listener.stopListeningAndDisconnect();

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 15

5.4 Biasing the sensors

Biasing refers to removing any offset in the pillar readings when the pillars are unloaded. It is
recommended that the user performs a bias each time the sensors are known to be unloaded.
Ensure that the sensor has been unloaded for at least one second before performing a bias to
ensure that the bias calculation does not include hysteresis effects. A bias operation can take up to
2 s. Ensure that the sensor remains unloaded throughout this time. An example of how to perform
a bias is shown in Example 5.6.

Example 5.6 – Biasing all pillars on all sensors

/* Perform bias */

if(listener.sendBiasRequest()){

printf("main(): Successfully sent bias request.\n");

}else{

 printf("main(): FAILED to send bias request.\n");

 return -1;

}

5.5 Accessing sensor data

Once the PTSDKListener object is listening for and processing data and the sensors have been
biased, the user application can access the incoming sensor data. An example of how to access
data from a sensor is shown in Example 5.7.

Example 5.7 – Accessing data from a sensor

/* Get the XYZ global force on sensor 1 */

double globalForce[NDIM];

sen1.getGlobalForce(globalForce);

for(int dInd = 0; dInd < NDIM; dInd++){

 printf("S1: global F%d = %.3f\n", dInd, globalForce[dInd]);

}

printf("\n");

3D Force Button Sensor C++ Library for WINDOWS (Beta v1.0) – Manual

Document #: 3DFC++WIN_B1.0_MAN_JAN22

www.contactile.com Page 16

6 Log file

6.1 Overview

If the PTSDKListener object was initialised with the isLogging flag being true, the function
connectAndStartListening (in a multi-threaded application) and the PTSDK function
readNextSample (in a single thread application) also generate a log file of the sensor data.

6.2 Log file location

The log file that is generated is stored in the Logs subfolder in the same location as the user-
defined application which uses the C++ Library.

6.3 Log file name

The name of the log file that is generated is LOG_YYYY_MM_DD_hh_mm_ss.csv where:

• YYYY is the four digit year,

• MM is the two digit month,

• DD is the two digit day,

• hh is the two digit hour,

• mm is the two digit minute and

• ss is the two digit second,
from the system clock at the time that the log file was created.

6.4 Log file format

The log file is saved as comma-separated values (CSV) in ASCII text format. The order of the
values and a description of the log file is described in Document #3DFDK_B1.0_MAN_JAN22.

